AD=AO40 103 GENERAL RESEARCH CORP SANTA BARBARA CALIF F/6 9/2
JAVS TECHNICAL REPORT, USER'S GUIDE.(U)
APR 77 C GANNON» N B BROOKS: R J URBAN F30602-76-C-0233
UNCLASSIFIED RADC=TR=77=126=VOL~1

el C PE

L2

i
[E

T =
sy,

122 lis e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A

P e e

RADC-TR-77-126, Volume I (of three)
Final Technical Report
April 1977

N T S S s I
-

ADAGA40103

*' | JAVS TECHNICAL REPORT
’ { User's Guide

General Research Corporation

AN AREE TR RN
fx‘xi"f‘.-w\;h:- &
BQFY 38 S A el e .

13 B05 DBES ROT
PERRIT FULLY LECIGLE Pﬁ(ﬁﬁ%ﬁw

.4_--;;;;;;;'-i-;;5; : "&«~m

Approved for public release; distribution unlimited.

. K
Ve DD O

3

{- JUN 2 19T

WU U L‘aﬂ

Ao e

BOC Fue copy

A) No.

ST _kA;AAN_‘_.“__..__.__.__‘.__%AA“___\A e

Some of the pages of this report are not of the highest printing quality
but because of economical consideration, it was determined in the best
interest of the government that they be used in this publication.

This report has been reviewed by the RADC Information Office (OI)
and is releasable to the National Technical Information Service (NTIS).
At NTIS it will be releasable to the general public, including foreign
nations.

This report has been reviewed and approved for publication.

APPROVED: W“JU\%WM&

FRANK S. LA MONICA
Project Engineer

ROBERT D. KRUTZ, Col, USAF
Chief, Information Sciences Division

FOR THE COMMANDER: /’dr)ﬁ %4,

JOHN P. HUSS
Acting Chief, Plans Office

Do not return this copy. Retain or destroy.

e ————— ——

MISSION
of
Rome Avr Development Center

RADC plans and conducts research, exploratory and advanced
development programs in command, control, and communications
(c3) activities, and in the ¢’ areas of information sciences
and intelligence. The principal technical mission areas
are communications, electromagnetic guidance and control,
survelllance of ground and aerospace objects, intelligence
data collection and handling, information system technology,
donospheric propagation, solid state sciences, microwave
physics and electronic reliabllity, maintainability and
compatibility.

Qo\,\”lo~

&

777g.191®

ﬂ‘Q\\CAN P

=

)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

7 REPORT DOCUMENTATION PAGE B e Lo S

f. RE W 2 £ 2. GAOVT ACCESSION NO.[3. RECIPIENT'S CATALOG NUMBER
RADC#TR-77-126;~ Voliime T '471" three)

~~T% TITLE (and Subtitie) /. / $. TYPE OF REPORT & PERICOTOVERED
b 42! i ‘ /J‘Finalmlepm ./

/ (“A/ r S x e
_‘ (N 1JAES"L:ECHNICAL _}EPORTo . I*jlay Z»ga Nov 76

| ¥sar's Guide . MING ORG. REPORT NUMBER

———

| e e e e R £ N/A
| AgTRoResy 8. CONTRAiT OR GRANT taunaen(.)
]1/ C./Gannona 2k]
) wf N. B. ‘Brocks /F30602-76-c-d233 Jordn
[IR. J./Urban / — -
\ 3 SCRFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

AREA & WORK UNIT NUMBERS

General Research Corporation S
P. 0. Box 3587 = : 3F =l
Santa Barbara CA 93105 /- I[55500838)0)
11. CONTROLLING OFFICE NAME AND ADDRESS P ‘ - / e
Rome Air Development Center (ISIM) =3 | Aprfd 877 / —
Griffiss AFB NY 13441 - FFFAGES T
99 ‘_;',..,__ _'- T e
T4 VONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. 7ottty nﬁr i
Same
UNCLASSIFIED
15a. DECLASSIFICATION DOWNGRADING
SCHEDULE
N/A

16. DISTRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited.

17. DISTRISUTION STATEMENT /of the abstract entered in Block 20, if different from Report)
Same

18. SUPPLEMENTARY NOTES
RADC Project Engineer:

Frank La Monica (ISIM)

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Computer Software, Software Testing, Software Verification, JAVS, Automated
Verification System.

20. ABSTRACT /Continue on reverse side | necessary and identify by block number)

The JOVIAL Automated Verification System (JAVS) is a tool for analyzing source
programs written in the J3 dialect of the JOVIAL language. From the user's
viewpoint, JAVS consists of a sequence of processing steps which (1) analyze
his JOVIAL source text, (2) guide him in preparing test cases for his code,

1 (3) analyze the results of tests executed by his code, and (4) automatically
: document his code.

The purpose of this document is to introduce the tester to JAVS and to the 1

DD , 25", 1473 eoimion oF 1 NOv 68 s oBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

4 \Lr

UNCLASSIFIED

\ SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)).

I #‘;rocess of software testing supported by JAVS. The information provided in this
guide on JAVS usage is intentionally limited to the beginning user. The
' appendices provide the information necessary for operating JAVS at RADC and

can be referenced by the sophisticated as well as the beginning user. The
£ information presented on the testing methodology which JAVS supports is
i applicable to both the beginning and sophisticated user of JAVS)A‘

{1
\|

N

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

PREFACE

The purpose of this guide is to introduce the user into the realm of

automated testing. Software testing supported by an automated verification

e system requires knowledge of two inseparable factors: the verification tool

' and the testing methodology which the tool supports. The information concern-
ing the usage of JAVS is intentionally limited to the beginning user. The
only prerequisite information is a knowledge of the JOVIAL language. The
casual user should have good success in analyzing the behavior of his programs
using the description of JAVS capabilities and a few commands set forth in g
this guide. All job control and file information is presented in appendixes,
along with estimates of processing time and core requirements.

The testing methodology which JAVS supports is described in this guide
because of its importance to JAVS users at all levels of expertise. Although
there is no single general methodology which applies to all testing situations,
there are a number of important issues that even the beginning verification

. tool user should recognize in order to make the testing experience successful.
“Section 10 of this guide focuses on software preparation for JAVS-supported
tefting, testing goals, resources required, and testing strategy.

In the series of JAVS reports, this guide should be read first. The
information presented should enable the tester to become a new user of JAVS
at RADC. Once the user has experienced some of the capabilities that JAVS
offers, the JAVS Reference Manual™ should be used to supply the complete
details of JAVS features and command language.

For more comprehensive treatment of software testing methodology not
restricted solely to JAVS-supported testing, the reader is referred to the
Methodology Report. This report describes experiences with using current
Automated Verification Systems, approaches to software quality, and advanced
AVS capabilities.

T ‘e

kTS Yolte Sectim [
0eg relt Sectim O
UMy [O

PISTRIZUTION AAVAILABILITY CODES

" RVAIL end, ot SPECIAL

iii

. W

L
L}

LIST OF JAVS REPORTS

® JAVS Technical Report: Vol. 1, User's Guide. This report is an intro-
v duction to using JAVS in the testing process. Its primary purpose is to acgquaint
{ the user with the innate potential of JAVS to aid in the program testing pro-

cess so that an efficient approach to program verification can be undertaken.
Only the basic principles by which JAVS provides this assistance are discussed.
These give the user a level of understanding necessary to see the utility of
the system. The material on JAVS processing in the report is presented in the
order normally followed by the beginning JAVS user. Adequate testing can be
achieved using JAVS macro commands and the job streams presented in this guide.
The Appendices include a summary of all JAVS commands and a description of JAVS

operation at RADC with both sample command sets and sample job control state-
ments.

° JAVS Technical Report: Vol. 2, Reference Manual. This report describes

in detail JAVS processing and each of the JAVS commands. The Reference Manual
is intended to be used along with the User's Guide which contains the machine-
dependent information such as job control cardc and file allocation. Through-
out the Reference Manual, modules from a sample JOVIAL program are used in

the examples. Each JAVS command is explained in detail, and a sample of each

report produced by JAVS is included with the appropriate command. The report

is organized into two major parts: one describing the JAVS system and the
other containing the description of each JAVS command in alphabetical order.
The Appendices include a complete listing of all error messages directly
produced by JAVS processing.

® JAVS Technical Report: Vol. 3, Methodology Report. This report describes
the methodology which underlies and is supported by JAVS. The methodology is
tailored to be largely independent of implementation and language. The dis-
cussion in the text is intended to be intuitive and demonstrative. Some

of the methodology is based upon the experience of using JAVS to test a large

information management system. A long-term growth path for automated verifi- 4
cation systems that supports the methodology is described. . !

3
® JAVS Computer Program Documentation: Vol. 1, System Design and Implemen-

tation. This report contains a description of JAVS software design, the organi- :
zation and contents of the JAVS data base, and a description of the software .
for each JAVS component: its function, each of the modules in the component,

and the global data structures used by the component. The report is intended
primarily as an informal reference for use in JAVS software maintenance as a

companion to the Software Analysis reports described below. Included in the

appendices are the templates for probe code inserted by instcumentation pro-

cessing for both structural and directive instrumentation and an alphabetical
list of all modules in the system (including system routines) with the formal
parameters and data type of each parameter.

° JAVS Computer Program Documentation: Vol. 2, Software Analvsis. This
volume is a collection of computer output produced by JAVS standard processing {
steps. The source for each coumponent of the JAVS soitware has been analyzed

iv

to produce enhanced source listings of JAVS with indentation and control struc-
ture identification, inter-module dependence, all module invocations with formal
and actual parameters, module control structure, a cross reference of symbo¥k
usage, tree report for each leading module, and report showing size of each
component. It is intended to be used with the System Design and Implementation
Manual for JAVS software maintenance. The Software Analysis reports, on file
at RADC, are an excellent example of the use of JAVS for computer software
documentation.

@ JAVS Preprocessor for JOVIAL. This report, prepared for GRC by its sub-
contractor, System Development Corporation (SDC), describes the software for
the JAVS-2 component: its origin as the GEN1 part of the SAM-D ED Compiler,
the modifications made in GEN1 to adapt the code for JAVS-2, the JAVS-2 code
modules, and the data structures. It contains excerpts of other SDC reports
on the SAM-D ED JOVIAL Compiler System. The report reflects the status of the
software for JAVS-2 as delivered by SDC to GRC in September 1974. The de-
scription of JAVS-2 software contained in the System Design and Integration
report reflects the status of JAVS-2 as delivered to RADC by GRC in September
1975 and thereby supercedes the SDC report.

® JAVS Final Report. The final report for the project describes the im-
plementation and application cf a methodology fc: systematically and comprehen-
sively testing computing software. The methodology utilizes the structure of
the software undergoing test as the basis for anlaysis by an automated verifi-
cation system (AVS). The report also evaluates JAVS as a tool for software
development and testing.

CONTENTS

PAGE
INTRODUCTION)
1.1 User's Guide Organization 1-1
1.2 JAVS Capabilities 1-1
1.3 JAVS Limitations 1-2
1.4 JAVS Organization 1-3
USING JAVS 2-1
2.1 Typical Step Sequence -
2.2 Preliminary Steps -
2.3 Command Structure 2-3
PRIMARY ANALYSIS 3-1
3.1 Tasks 3-1
3.2 Preliminary Analysis Input 3-1
3.3 Commands 3-1
3.4 Primary Analysis Output 3-6
DOCUMENTATION 4-1
4.1 Documentation Input 4-1
4.2 Commands 4-1
4.3 Documentation Output 4-3
INSTRUMENTATION 5-1
5.1 Tasks 5-1
5.2 Instrumentation Input 5-1
5.3 Commands 5-1
5.4 Instrumentation Output 5-3

vi

!l'IlllllllIlllllllllllllllllIlllllllllllIllIlllll-lllllllllllllllnlpgp—-------t,

CONTENTS (CONT.)

| SECTION PAGE
6 TEST EXECUTION 6-1
: 6.1 Tasks 6-1
) 6.2 References to Data Collection Routines and
Test File Control 6-1
6.3 Test Case Identification and Test File Control 6-4
7 POST-TEST ANALYSIS -1
7.1 Tasks 7-1
7.2 Analyzer Input 7-1
7.3 Commands 7-1
7.4 Analyzer Output el
8 RESTESTING ASSISTANCE 8-1
8.1 Retesting Targets 8-1 4
8.2 Reaching Set Tasks 8-2 i
8.3 Reaching Set Input 8-2 /
8.4 Commands 8-2 i
8.5 Reaching Set Output 8-2 ;
8.6 Proceeding from Reaching Sets 8-3
! 9 COMMANDS SUMMARY 9-1 ;
10 TESTING METHODOLOGY 10-1 1
10.1 Software Test Object 10-1
10.2 Test Resources 10-3 1
10.3 Test Goals 10-4 -
10.4 Testing Strategy 10-5 !
10.5 General Strategy 10-9
APPENDIX A JAVS Command Summary A-1
APPENDIX B JAVS Macro Commands B-1
APPENDIX C JAVS Files c-1
APPENDIX D SAMPLE JOB STREAMS FOR RADC D-1
APPENDIX E TIME AND SIZE ESTIMATIONS E-1
APPENDIX F JAVS INSTALLATION REQUIREMENTS F-1
APPENDIX G JAVS UTILIZATION CHECK LIST G=1
INDEX I-1
REFERENCES R-1

}
d
K
3
i

i
1
E)
ILLUSTRATIONS
t b NO. PAGE
5 1.F Overview of the JAVS in the Testing Process 1-4
; 2.1 JAVS Processing Sequences 2-1
5 3.1 The Role of Primary Analysis in the Testing Process 3-2
3.2 Example of Structural Analysis 3-5
3.3 Pictorial Example of Structural Analysis 3-4
: 3.4 BASIC Output 3-5
3.5 STRUCTURAL Output 3-6
é 4.1 The Role of Documentation in the Testing Process 4=2
‘ 4.2 Library-Wide Symbol Cross Reference 4-4
i 4.3 Internal Library Dependencies 4-5
4.4 External Library Dependencies 4-6
4.5 Library High- and Low-Level Modules 4-7
4.6 Module Listing 4-8
: | 4.7 Module Invocation Bands 4-9
- 4.8 Module Invocation Space 4-10
E) 4.9 DD-Path Definitions 4-11
4.10 Control Flow Picture 4-12
5.1 The Role of Instrumentation in the Testing Process 5-2
6.1 The Role of Test Execution in the Testing Process 6-2
6.2 Test Execution Processing 6-3
/ 6.3 COMPOOL for References to JAVS Data Collection Routines 6-4
L 70 The Role of Post-Test Analysis in the Testing Process 7-2
72 Module Statement Listing 7-4
: 1e3 Invocation and DD-Path Execution Summary 7-5 :
: 7.4 DD-Paths not Executed 7-6]
v Module Invocation Trace 7-7 ?
; 7.6 DD-Path Coverage 7-8
8.1 Test Case Assistance REACHING SET 8-3
? G.1 Flowchart of JAVS utilization

Z
o

o T > IR > TR ¢ I O = R = R < T)

N - N N e

TABLES

PAGE
Relationship Between Commands and Tasks 2-3
Test File Data Control with PROBI 6-5
Command Summary 9-2
Sample Command Sets 9-2
Files used in JAVS Processing c-3
File Size Estimation E-2
CP Time Estimation E~3
JAVS Installation at RADC F-2
JAVS Installation at SAC Headquarters F-3

i A U A i

EVALUATION

The purpose of this effort, identified in TPO V/4.2, was to enhance
the JOVIAL Automated Verification System (JAVS) and to implement a
systematic software testing program using the JAVS to assist in the
testing process. Developed to aid in the testing and verification of
JOVIAL J3 programs, it provides the ability to increase the practical
reliability of software by increasing the achieved level of testing.

As a result of this effort, the JAVS was successfully enhanced and
tuned for operational use. Included in its excellent supporting documenta-
tion is a refined methodology for testing large, complex software systems.

3, 4
A’Z(f fc/»)J» i)i wea
e

FRANK S. LA MONICA
Project Engineer

ity et

1. INTRODUCTION

JAVS was developed as a tool to aid JOVIAL software developers and
testers determine the extent to which their programs have been tested and to
assist in deriving additional test cases to verify the software. Up to now,
testing has been without an orderly approach and without accurate means to
determine exactly what portions of code have been exercised. JAVS provides a
testing approach” and an automated tool for measuring the effectiveness of
test data in terms of program structure.

1.1 USER'S GUIDE ORGANIZATION

Section 1 of this guide introduces JAVS in the validation of JOVIAL soft-
ware. The overview description includes JAVS capabilities and limitations in
order to provide an assessment of what tasks are automated and what tasks the
software tester must undertake using JAVS reports as a guide. Section 1 also
contains a description of JAVS's organization in terms of the tasks it performs
and the accomplishment of the tasks through user commands.

Section 2 describes the utilization of JAVS: what preliminary steps need
to be taken and how to use the command language. Sections 3 through 8 describe
more specifically the processing steps taken in a typical validation effort.
Section 9 summarizes the commands, and Section 10 describes a testing strategy.
At this point the reader can become a JAVS user and consider a test planm for
his particular software. The appendixes will be needed to operate JAVS at
RADC. Appendix A contains a summary of all JAVS commands; Appendix B contains
the expansion of the macro commands; Appendix C describes the files used by
JAVS command sets; Appendix E contains estimations of processing time and file
size requirements, Appendix F contains the JAVS installation requirements for
RADC.

1.2 JAVS CAPABILITIES

Before proceeding, it should be made clear what JAVS can and cannot do.
As a testing tool, JAVS provides trace and coverage reports showing program
behavior during a test. Tracing can be performed, at user option, to show
module invocations and returns or to show which outcome was taken for each
conditional operation in the program. In addition, the user can trace "impor-~
tant" events, such as overlay link loading, by invoking one of the JAVS data
collection routines. Test performance coverage reports showing statements
and/or decision outways can be obtained on a per-module, per-test-case, and
per-test-run basis. These reports allow the user to focus on untested modules,
program paths, and statements.

e abaie e

If the testing target is determined to be a set of modules which received
little or no coverage during the test execution, JAVS reports can be obtained
to list all invocations (and the statement numbers of the calls) to the modules 4
and to show the modules' interactions with the rest of the system in terms of
calling trees and interaction matrices. If the testing target is a segment of
code within a module, the user can request a JAVS report showing the statements
that lead up to the target. Armed with this '"reaching set' report, .the user
can spot key variables whose values affect the flow through the program paths
and locate all instances of the variables in the system-wide cross reference.

=1

Retesting may necessitate code changes in some of the modules in the
system to remove dead code or coding errors found during the test analysis.
To facilitate determining all modules in the system which could be affected
! by the code changes, a JAVS report will show the interaction between the
. selected set of modules and the rest of the system.

JAVS uses a data base to store information about the test program. The
availability and management of this information form the basis for a variety
of services in addition to the primary task of testing assistance. Computer
program documentation, debugging through JAVS computation directives, and
reports useful for code optimization are the major side benefits of JAVS.

Computer decumentation requirements for the Air Force typically specify
flow charts and lists of program variables and constants. In the JAVS develop-
ment and implementation contracts these requirements were replaced by specifying
certain JAVS reports, i.e. self-documentation. It was found that the module
listings (enhanced by indentation and identification of decision points),
module control flow pictures, module invocation reports (showing formal and
actual parameter lists), module interdependence reports, and a cross-reference
report for each JAVS component are more meaningful documentation and are
generated automatically by JAVS. |

Software development can be assisted by using JAVS to document and test
the system as it is built. To aid in data flow analysis and checking of
array sizes and variable execution values, JAVS offers computation directives.
The directives are a special form of JOVIAL comment, recognized by JAVS and
expanded into executable code (using the JOVIAL monitor statement) during the
instrumentation phase. The user can check logic expressions with an ASSERT
directive, check boundaries of selected variables with an EXPECT directive, and
turn on and off the standard monitor tracing with TRACE and OFFTRACE directives.
The computation directives are described in the Reference Manual.

Code optimization is aided by the post-test reports, which show the number
of times each statement is executed and the execution time (in C.P. milli-
seconds) spent in the modules. Modules which are never called and should be
removed are listed in another JAVS report.

1.3 JAVS LIMITATIONS

Testing coverage results indicate what parts of the program were executed.
It is up to the user to determine if the program's output is reasonable. One
of JAVS post-test analysis reports lists the execution coverage during the test
run in terms of the percentage of decision outways taken. A decision outway
(decision-to-decision path, or DD-path) is the set of statements executed as
the result of the evaluation of a predicate (conditional operation). A good
standard for the testedness of a program is to exercise every decision outway
at least once. This level of testing is more rigorous than testing every
program statement at least once. However, it should be emphasized that certain
combinations of DD-paths may contain errors which are not detected in merely
executing each outway one time.

1.4 JAVS ORGANIZATION

JAVS reads the user's JOVIAL program as data and performs syntax,
structur4l, and instrumentation analyses on the source code. JAVS communicates
with the user through a command language and utilizes a data base to store the
information about the program. The user is provided with an instrumented file
of the selected program modules with which the user supplies test data for
execution. The execution results are written to a file from which JAVS's post-
test analyzer issues execution tracing and coverage reports.

Six functional processes, in addition to execution with test data, make
up the substance of software validation provided by JAVS. The organization of
JAVS is defined by these six tasks. To reduce the burden of the user, JAVS
exists as an overlay program at RADC with a macro command language supplementing
a large, versatile standard command language. The processing steps and their
basic functions are listed below:

BASIC, Source Text Analysis: Source text input, lexical analysis, and
initial source library creation

STRUCTURAL, Structural Analysis: Structural analysis and execution path
identification; library update with structure and path information

INSTRUMENT, Module Instrumentation: Program instrumentation for path
coverage analysis and program performance directed by user; library
update with probe test instrumentation

ASSIST, Module Testing Assistance and Segment Analvsis: Testing assistance
for improved program coverage

DEPENDENCE, Retesting Guidance and Analysis: Retesting requirements
analysis for changed modules

TEST EXECUTION: Execution of instrumented code and analysis of directed
program performance

ANALYZER, Test Effectiveness Measurement: Detailed analvsis of program
path coverage; execution traces and summary statistics

These steps need not be performed in the above order; other orders may be
preferable at times. An overview ot how JAVS is used in the testing process
is shown in Fig. 1.1.

=3

/" YOUR JOVIAL

SOURCE

SOURCE TEXT

ANALYSIS,
Egé;RRY STRUCTURAL
ANALYSIS
MODULE
PROBE INSTRUMENTATION
MODULE TESTING
DOCUMENT | ASSISTANCE AND

——a' SEGMENT /FNALYSIS,

RETESTING GUIDANCE
AND ANALYSIS

1

TEST EXECUTION,
PROGRAM
PERFORMANCE

TEST

TESTING
EFFECTIVENESS
MEASUREMENT

Figure 1.1.

TEST GOALS

ACHIEVED
?

JOVIAL source code is input for processing and
analysis. A special form of comment (optional)
inserted by the user directs JAVS processing for
progran performance analysis.

AN-47751

JAVS analyzes the code and generates a directed
graph of the control structure.

The possible flows through the program are
determined. All pertinent data is stored in a
data base for later use. Additional or

changed source code causes an existing data
base to be updated.

JAVS automatically inserts software probes

into the source code to intercept and record
progran flow during execution. A second type
of instrumentation is used to record statistics
on program performance according to directives
inserted by the user in the source.

JAVS provides a variety of services which assist
in the establishing of a continuing testing strat-
egy both at the detailed level within a module and
at the module interdependence level. Test cases
are constructed by the user. Reports can be used
as program documentation.

Prograc execution provides normal computational
results as well as outputs from the instrumen=-
tation. Structural flow output is recorded for
later post-test analysis by JAVS. User-directed
program performance output is interspersed with
normal program output.

JAVS includes detailed post-test analysis
facilities which provide measures of testing
thoroughness, both individually and cumula-
tively for a set of test cases.

The results are examined by the user to determine
if test goals have been met and testing is
completed.

Overview of the JAVS in the Testing Process

1-4

A e | B

2 USING JAvS

The process of program verification is best described by example. One
) purpose of this User's Guide is to present an overview of JAVS capabilities
through example programs processed by the JAVS execution steps. It is impor-
tant to note that while there are six processing steps a given validation
effort may require use of only a few of these. The selection of appropriate
processes is largely a user decision, based upon his requirement for the
information that the various steps provide. As each step is described,
through example, the user will gain insight into its utility for his particular
needs. In order to develop a basic understanding of the processing sequences
to be utilized in the examples, Fig. 2.1 illustrates the potential JAVS processing
flows in terms of step interdependencies.

P Y T

B waidh

SOURCE
TEXT
ANALYST
BUILD LIBRARY 1
STRUCTURAL
ANALYSIS
. MODULE TESTING RETESTING
progE JONLE ASSISTANCE A%D 6U2DANCE
INSTRUMENTATION 'S‘EC.;E“T :c-:‘JS‘.SJ AND ANALYSIS
TEST DOCUMENT
EXECUTION OF
INSTRUMENTED]
CO0E
i E
TEST
TesT - ‘ | CoLuil |
fne DI Avriaoit LUEL

Figure 2.1. JAVS Processing Sequences

The user must provide three major types of input to JAVS: (1) the source
code to be tested, (2) a set of commands to direct JAVS processing, and (3)
test data for program execution. Section 2.2 describes the preparation of the
source code for input to JAVS. Section 2.3 describes the rules for inputting
commands.

! 2.1 TYPICAL PROCESSING SEQUENCE
4 This guide is organized to lead the user through the following sequence
| of steps:
Er
| 1. Build a data base library containing source text and structural
\

analyses (Sec. 3).

% 2, Document the source text (Sec. 4).
g 3. Instrument the modules (Sec. 5).
' 4, Execute the program (Sec. 6).
S, Measure the test's effectiveness (Sec. 7).

6. Retest the program (Sec. 8).

These steps provide the primary assistance needed to generate test cases
. and measure the extent of program testing coverage as each test case is input
to the system.

2.2 PRELIMINARY STEPS

Before the source text to be verified is submitted to JAVS, the user
should take certain preliminary steps:

L. The source text should be compiled by a JOVIAL compiler to confirm
that it is free of any syntactical errors.

2 The program to be tested should have been previously executed with
test data necessary to ensure proper execution.

3. JAVS text identification directives should be inserted in the source
if there is more than one START-TERM sequence in the program.

4, JAVS computation directives should be inserted in the source if the
performance testing capability is utilized.

Both types of JAVS directives (a speciil form of JOVIAL comment) are described
in detail in the JAVS Reference Manual™. The JAVS text identification directive
is used to assign a unique name to a JOVIAL START-TERM sequence (program, sub-
program, or COMPOOL). If no text directive is assigned to a START-TERM sequence,
the text name *NOJAVS* is assigned as a default. The computation directives are
used to make assertions about the behavior of the program and to verify the
value of specified variables without altering the logic of the program. These 1
directives can make valuable contributions in debugging and boundary conditions
testing. It is suggested that the user acquire some familiarity with JAVS before
utilizing the computation directives. The Reference Manual (Sec. 1.5) describes
their capability and utilization.

2=

The following sections describe the recommended sequence of step
executions to be utilized by the beginning user. Although JAVS is capable
of processing very large JOVIAL programs, we recommend that the tester select
! a modest program (several hundred JOVIAL statements or less) to use in his
first experience with JAVS processing.

2.3 COMMAND STRUCTURE

The user directs JAVS processing by a set of commands. There are four
"macro" commands which can be used with the JAVS 2.0 overlay program, in
addition to a variety of standard commands. Each macro command expands into
a set of commonly used standard JAVS commands. While both types of commands
can be used together, the user is advised to be aware of the expansion of
the macros before combining commands. Table 2.1 shows the relationship
between macro commands, standard commands, and the processing tasks. Sections
3-8 describe each task, as well as the appropriate commands to use, and the
process of executing the test program is described in Sec. 6.

All commands are input one per card. Blanks are ignored, so the
commands are free-form. The card scan ends with a period or with the end
of a card. If a command requires more than one card, a comma must appear
at the last non-blank character of each card preceeding the continuation
card. Up to three continuation cards may be used. Each command consists of
a sequence of terms separated by a comma or an equals sign.

TABLE 2.1
RELATIONSHIP BETWEEN COMMANDS AND TASKS
< Macro Command Standard Command {
Keyword Keyword Task §
BUILD LIBRARY BASIC Syntax analysis ;
STRUCTURAL Structural analysis
PROBE INSTRUMENT Structural and
computation
instrumentation
DOCUMENT ASSIST Module and inter- |
PRINT module reports
DEPENDENCE
TEST ANALYZER Post-test coverage
and trace analysis |
|
2=3

3 PRIMARY ANALYSIS

Prior to instrumentation, documentation, testing, or retesting, a set
of primary analyses must be performed. Syntax analysis is performed on the
JOVIAL source program, transforming it into a format appropriate for storage
on a random-access data base (library file). Using the information on the
data base, structural analysis is performed on the executable modules, up-
dating the tables in the data base library. Structural analysis includes
building a directed program graph which is the basis for instrumentation and
testing analyses. The subject matter of this section, primary analysis, is
shown in the context of the testing process in Fig. 3.1.

3.1 TASKS

= Syntax analysis consists of breaking-down each START-TERM sequence of
the JOVIAL source text into invokable modules. A data base library is
created containing internal tables representative of program text, statement
descriptions and symbol classification.

Structural analysis adds to the data base library a description of pro-
gram structure in terms of decision-to-decision paths. These paths represent
a unique and systematic ordering of all decision outways. Figures 3.2 and
3.3 illustrate the concept of DD-paths. A DD-path consists of all the
executable statements from a conditional statement to the next conditional
statement. Figure 3.2 shows the statement membership for each DD-path in
module EXAMPL. This module contains 12 DD-paths. Below each DD-path number
(listed across the page) is the order in which the statements are placed on
each DD-path. For example, DD-path 2 consists of statements 15, 16, 29, 30,
and 31 in that order.

3.2 PRIMARY ANALYSIS INPUT

JAVS requires two input files for syntax analysis: the JOVIAL source
program in BCD mode on file READER (09) and the JAVS commands in BCD mode on
file COMMAN (05). If the source program contains more than one START-TERM
sequence, or if the source text is a COMPOOL or requires a COMPOOL to compile,
the user must insert a JAVS text identification directive as the first state-
ment. This statement is described in Sec. 1.4 of the Reference Manual and
is shown in Figs. 3.2 and 3.4.

Input for structural analysis are the JAVS commands and the data base
library created during the syntax analysis.

3.3 COMMANDS

Primary analysis can be accomplished by the single JAVS command:
BUILD LIBRARY [=<name>].
This command expands into the following set of standard commands:

CREATE LIBRARY = <name>. (default name is TEST)
START.

3~1

(R

bt B O

s

v vy &

ISLLP=-NY

A special form of comment (optiomal)

inserted by the user directs JAVS processing for

program performance analysis.

j#——= JOVIAL source code is input for processing and
analysis.

je—— JAVS analyzes the code and generates a directed

graph of the control structure.

The possible flows through the program are

determined.

All pertinent data is stored in a

Additional or

changed source code causes an existing data

data base for later use.
base to be updated.

s scficware grcbes

tives

ditec

e

ACCOT

e

Bhal?

r

pet

- | 4
< -
— W e<g
> —uncg v
o — D e
D w wun—wn
o O > O >
@ o &K ID
- =) DL X <
oo OZ— = .
> wun nan < #
> w
o< a
<y
a2 %
- 0 (AN
=) -
[-]
~ .

o determine

Ave Leen tet aud testicg is

.

Il
1
'

418

The Role of Primary Analysis in the Testing Process

Figure 3.1.

I
Statement Execution Order
i DD-Path
i 1 & & 6 3-8 ¢ an ¥ 12
1" JAvSTEXT mAMPL capuTE (cowpol)"
2 START
3 PROC EXAMPL (AA =33) § 1
& ITIMAATF S
S ITR“B3UPS
6 ARRAY CC 227 $
7 BECIN
8 BECIN "
9 +10.2-001 +10.2-001 END
10 BEGIN
11 +10.2-001 +10.E-001 END
12 B
13 BECIN 2
14 MONITOR B3 , CC §
15 IFEITH AA LS 00.E-001 § 3
16 BB = - AA S
17 ORIT AA EQ 00.E-001 § r 1
18 BECIN 2
19 B3 = 00.2-001 § 3
20 WR1=0,1,1% L 2
¥ 21 BEGIN) 3
22 FORJe0 ,1,18 6 2 4
23 CC ($1,J8) =00.2C01 % ? 1,39 1 3
. 26 o 2 £ 3
23 RETURN § 2
26 8D
27 ORIZ 1 § 2 1
23 BB = AA § <
29 L] 3
30 PORK=0,1,13$ 4 2
k) CC($SK,08) =138/ 20.8-001 § I s 13,3 1
32 D 2
3D TNy

Figure 3.2.

3-3

Example of Structural Analysis

rPROC (3)

AN-47886

Y
¢ IFEITH (15)

ORIF (17)

LOOP TEST (23)

®
ORIF1
Va7) LOOP TEST (24)
LOOP TEST (31)
® END (32)
= Numbers represent DD-paths
° Dots represent decision points
IFEITH Words represent decision statement types

(31) Parenthetical numbers represent
statement numbers

Figure 3.3. Pictorial Example of Structural Analysis

3-4

*
" JAVSTEXT EXAMPL COMPUTE (COMPOL)"'

START

] PROC EXAMPL (AA=BHY)S
ITEM AA F §
1TEM BB F$

4 ARRAY CC 2 2 F$

BEGIN BEGIN 1.7 1.0 END
BEGIN [.v 1.0 END END

BEGIN

MONITOR BBs CCS

IFEITH AA LS 0.0%

BB = -AAS

ORIF AA EQ 0.0%

BEGIN

BB = 0.0%

FOR 1=041,1%

BEGIN

FOR J=041,+1%

CC(S1,J8) = 0.0%

END
RETURNS
END

ORIF 1%
BB = AAS
END

FOR K=0+1+1$
CC(%K+08) = BB/2.0%
END

TERMS

EXAMPL (EXAMPL) COMPLETED
sevacese NO ERRORS WERE FOUND BY JAVS=2 eeeces

-~ .

{ This statement is necessary to inform JAVS that a COMPOOL is being used.
See Sec. I.4 of the JAVS Reference Manual for description of the text
identification statements.

Figure 3.4. BASIC Output

BASIC,COMMENTS = OFF.
BASIC. i
FOR LIBRARY. |
STRUCTURAL.
END FOR.
END.

The actions taken by the macro command (or equivalent set of standard

: commands) is to initialize the JAVS system with a library whose name is

<name> (or TEST if none is specified), process syntax analysis (BASIC) re-

moving JOVIAL comment statements, and perform structural analysis for all
modules on the newly created library.

E There are several BASIC processing options, all described in the
F Reference Manual. If the user wishes to exercise any of the options, to add

3=3

Bl dni b

T —— PV Y

the JOVIAL comments in the source text to the library, or to perform struc-
tural analysis on a subset of the modules, he cannot use the BUILD LIBRARY
macro command; instead, the desired sequence of BASIC commands must be
supplied. Section 5 of the Reference Manual contains sample command sets

for each command description.

3.4 PRIMARY ANALYSIS OUTPUT

The main output is a data base library file containing the source text
transformed into invokable modules and tables for other functional processing
and reports. Printed output consists of the card image listing of the JOVIAL
source code (this can be turned off with a BASIC option) along with JAVS
error messages, if any, and a few descriptive lines for each module stating
the number of DD-paths generated. If any syntax errors are printed adjacent
to the offending source text line, they should be scrutinized. A complete
list of JAVS errors is in Appendix B of the Reference Manual. Some errors
will require source code changes before further processing, and some errors

are syntactical warnings.

Figure 3.4 shows the syntax analysis output and Fig 3.5 shows struc-
tural analysis output for module EXAMPL.

JOVIAL AUTOMATED VERIFICATION SYSTEM eee SECONDARY MODULE ANALYSIS eee

MODULE EXAMPL > OF JAVSTEXT <EXAMPL >,
MONULE DEPENDENCE TABLE CONSTRUCTED.
STATEMENT DESCRIPTOR BLOCKS UPDATED.
DD-PATH TABLE CONTAINS 12 ENTRIES.

Figure 3.5. STRUCTURAL Output

4 DOCUMENTATION
Automated documentation, showing inter- and intra-module relationships,
1 is useful during the software development, testing, and maintenance stages.

Figure 4.1 shows the JAVS documentation activity in the context of the testing
process. JAVS provides a wide variety of reports at user request. Some of
the reports pertain only to a selected module; others pertain to all modules
on a library. Seven of the most commonly requested types of reports are
generated by the macro command:

DOCUMENT.
This command expands into the following set of standard commands:

OLD LIBRARY = TEST.

START.

ASSIST,CROSSREF,LIBRARY. (Fig. 4.2)
DEPENDENCE, GROUP,LIBRARY . (Fig. 4.3)
DEPENDENCE,GROUP,AUXLIB. (Fig. 4.4)
DEPENDENCE, SUMMARY. (Fig. 4.5)
FOR LIBRARY.

PRINT,MODULE. (Fig. 4.6)
DEPENDENCE, BANDS=5. (Fig. 4.7)
DEPENDENCE, PRINT, INVOKES . (Fig. 4.8)
END FOR.

END.

This collection of reports provideé a static analysis of the individual
modules and of the interaction of the system of modules on the library.
Section 4.2 describes alternate or additional reports, and Sec. 4.3 shows
sample output of each report as well as a description of its utilization.

4.1 DOCUMENTATION INPUT

The data base library containing syntax and structural analyses along
with JAVS commands are the input for the software documentation process.

4.2 COMMANDS

The single command DOCUMENT will provide the seven types of reports
shown in Figs. 4.2-4.8. By mixing JAVS standard and macro commands, the
user can specify any combination of reports. A selection of documentation
command sets is:

° Obtain the three module documentation reports for a specified g
JAVSTEXT (named START-TERM sequence), in addition to the four :
library-wide reports.

DOCUMENT,JAVSTEXT = <textname>.]

4=1

I 3
i
b e — JOVIAL source code s input for processing and = i
snaiycis, A special fcrm of comrzent {cpticunel) |
4 insersed by the user divects JAVS processiag for i
pregran performance dialysis. 3 4
o,
~]
f “,.E‘JZLO
”)‘.i?;?&?‘!
L]
y - VS suzomsticslly Issercs softuare probes
i PROGE inlo the zowrce code Lo intercert #nd racord
; prograe flow 2uring €3€C452208. A S£L0ns Type
K of dnatiimentation Lz used Lo vecord statiztics
ca grogran performance scecréing co directives .
17567122 bY the user in the sourte. i
- MODULE TESTING J@—— JAVS provides a variety of services which assist i
; DOCUMENT ASSISTANCE AND in the establishing of a continuing testing strat- 1
SEGMENT ANALYSIS, egy both at the detailed level within a module and
RETESTING GUIDANCE at the module interdependence level. Test cases
! AND ANALYSIS are constructed by the user. Reports can be used
as program documentation.
I]
i Yrograa
§ y resulce
i tation.
i jater o
Progran
] o
i TELY 3
! gres res of cestiog
' SR .
oS y and cusmla-
. /’//
MO s
4 —-—/ ',‘.‘.:4 . The results are examined by the uzer tc determine
4 \ s / 1f cest goals have been met and testing 46 -
~. compleced,

Figure 4.1. The Role of Documentation in the Testing Process

) ° Obtain the three module documentation reports for selected
modules of a specified JAVSTEXT, in addition to the four
library-wide reports.

DOCUMENT,JAVSTEXT = <textname>,
MODULE = <name-1>,...,<name-n>.

° Specify a library name (must be the same as the created
library name), and select the DD-path picture and definition
reports for all modules, in addition to the seven macro 3
command reports.]

OLD LIBRARY = <libname>.

START.

DOCUMENT.

FOR LIBRARY.

PRINT,DDPATHS (Fig. 4.9)
ASSIST,PICTURE. (Fig. 4.10)
END FOR.

4.3 DOCUMENTATION OUTPUT

Figures 4.2-4.8 contain sample output for the seven reports generated ‘
by the DOCUMENT macro command. The first four reports are library-wide
reports; the last three reports (Figs. 4.6-4.8) are module reports. Figures
4.9 and 4.10 show sample output for the additional commands:

PRINT ,DDPATHS.
ASSIST,PICTURE. |

GENERAL CROSS REFERENCE LISTING

FOR WHOLE LIBRARY
USED/SET/DEFINITION ¢ ® INDICATES SET, D INDICATES DEFINITION)

SYRROL

e
CARO
€xnpL)

€xnpL2
€xmPL)

FILL
10
INOXS
ITERIA
1TER)

1TER2A
1TER2

LARELY
LAREL2
LIMIT)
LiMrT2
MESAGE
MESSAG
“SG61
M5G2
M5G3
MSGe

Pick
PRINTR

READER
RESULT

TAPES
TAPES

MODULE

EXPROGM
€xPROGM
ExMPL)
EXPROGM
ExmPL2
EXPROGM
ExupPL)
€i1MPL3
€xupPL)
EXPROGH
ExmPL)
EXPROGM
ExmpPL2
€XPROGM
EXPROGM
ExvPL2
EXPROGM
ExmPL)
ExvPL]
ExMPL |
Exup(
EXCOMPL
EXCOMPL
ExMPL)
EXPROGM
EXCOMPL
EXPHROGM
EXCOMPL
ExMPL
ExComPL
ExMPL 1
EXCOMPL
[LN
(3 TN
ExMPL)
EXPROGM
EXPROGM
ExXmMPL]
EXMPL)
EXPROGM
EXPHOGM

180
120
1
24
1
27
29
1
E1)
S0
70
(1]
ae
60
S0
se
70
27
27
1
1
s0
110

28
10¢

18e

22e
10

100
1n

110
290

30
«0

3)3e
17

28

17
18
) I

21

21
240
15

26
15

24
27

3se

19
16¢

28
22

26
23

300
10

3

2

12

30 32

This report provides a symbol cross reference 1isting for all modules on
the library. The symbol types are variables, file names, switch names, labels,

and subprogram names.

Figure

Adjacent to the statement number of the symbols appear-
ance is a flag (* or D) indicating setting or definition.

4.2.

Library-Wide Symbol Cross Reference

LIBRARY DEPENUENCE TARLE

¢eecccnccirncccsccncscncncccnsncnad

e, . .
el N ¢AABCCCDEEGGGLLMMNOOPPSSTe
e N.V *DOTIKOTFREETOUUUPLURVRAGE ¢
¢ V,0 +CONURNOARTTCOKVVIIOTMAPNR »
. 0.K *RTONKTRCXARCRK 14T0OS LTPMe
® KeE ¢ O T O R KB UR T+
. E.Ee K K Ne
. Ree .
D L L L T T T S pp— Y
¢ ADCR ., X XX .
¢ ADDTOK « X iR XX .
¢ BTO0 L .
¢ CIDNT o . .
¢ CKRK . . X .
e CONTOK o . B
¢ DT0R . . .
e EFAC * X . XX .
¢ ERRXR ¢ X . .
e GETB . . .
e GETC . . .
¢ GTCR .) A X Xe
¢ LOOK ¢ X X . XXX .
¢ LUK . X X XX oX X .
¢ MUV] . X . .
¢ MUVS . X X .
¢ NPUT . X . Xe
¢ OLOOK X XXX XXXX X XXXX, X XXe¢
¢ OUTSB « . .
¢ PRM . e K °
e PVALU o X . .
¢ SBPTR o X « ¢
¢ SGNP . X XX .« ®
¢ TERMIN ¢ X X o*
[T P T P T R LR R L L T LT T TR)

The interaction of all modules on the data base library is shown in this
square matrix. If the library contains all modules in the user's program, this
report provides a concise, complete picture of the total internal module depen-
dencies. If the library contains a subset of the total program, this report
aids in determining what modules do not interact with the component and might
be better suited for another component.

order.

Figure 4. 3.

Internal Library Dependencies

The modules are listed in alphabetical

L)

daaiia e ity o

AUXILIARY LIRRARY DEPENDENCE TABLE

booe * - cTooocess

.1 . .
el N *ABEFGGGH]I IMMMMOPPPRRSSW e
¢ N,V *CTRAETVONNDDNDUPRUUETDYR

e V,0 *SORTTCELMSARBBVUXTTMSBSA
0K <+THOARAUSDBNNS2TX3ELQ STPe
K.E +B RLLRP B AET LSU TEUe
EJ.Ee L{’] MX KTO RMPe
Reo P e
cSeoccovendeonoesssoesvacavceeeseeownweaed
ADCR .
ADDTOK
BTOD
CIDNT
CKRK
CONTOK
pros
EFAC
ERRXR
GETB
GETC
GTCR
LOOK
LUK
MUV1
MUVe
NPUT
OLOOK
ouTsSs
PRM
PVALU
SBPTR
SGNP
TERMIN o X X Xe

bomncnncciacccacccccsnccncccncnas

-

X X

L 2L R R R IR IR R R R R T R R R R R R 2
® S 4 S S 0t e et e e e

® O 0 0.0 0 SO0 e e 00
*

This report differs from the last one in that the invoked modules (listed
across the page) are not resident on the Tibrary. If the library allegedly
contains all modules in the program, the external modules should consist only
of system routines. If the library contains a component of the total program,
this report shows the module invocation interfaces to other externals.

Figure 4.4. External Library Dependencies

LIBRARY DEPENDENCE SUMMARY,.,

E ! THE FOLLOWING PROCEDURES ARE NOT INVOKED BY ANY MODULE ON THE LIBRARY
i LOOK
| v
E | THE FOLLOWING PROCEDURES DO NOT INVOKE ANY MODULE ON THF L IRRARY
i . (® PROCEDURES DO NOT INVOKE ANY MODULES AT aLL)
|
f CONTOK
i ouTS8
I GETR
; GETC
8TOD .
CIDNT
D708 .

Considering the modules on the library as a pyramid representing the
invocation hierarchy of the modules, this report identifies the “top" and
"bottom" modules in the system.

Figure 4.5. Library High- and Low-Level Modules

I!lll.ll-lllllIlIIIllIlIIIllllllllllllllllllllIIlIIFlIIlllllIllllllllll--!----u

MODULE STATENENT LISTING

' MOOULE <ERWPL] >¢ JAVSTEXT <EAPROGM >¢ PARENT MOOULE <CAPROGN »
NO. LWL STATEWENT DD=PATHS CONTROL
v 1o PROC FXWPL] (LIMITL o LINITR) 8 (1
2N BEGIN
b I ITEM (IMIT) § 24 S 8
« N TTEM LI%IT2 |1 24 S 8
\ S (3 ARRAY FILL 190 1 24 S 8
e 1) ITEM QESULT I 24 S 8
TN ITE™ INOXS | 24 S 8
AN 88, TRACE o+ RESULT ee
S) e IF LIMIT] GO o0 8 (2- » 1r
. i 10 ¢) LIMIT) » 99 8
. | 1ncn RESULT » & §
- 12 ¢ 1) FOR I & | o 1 o LIMIT) § FoOR3
:) 13 ¢ 2 BEGIN
16 2 9, EXPECT ¢ RESULT »)| + S oo
J) 15 (20 FILL (81 =) %) =138
e (2 RESJULT ® (RESULY « 1) 7 1 §
17 ¢t 2y #8, ASSERT o RESULT GR 10 o»
i 18 ¢ 2 FOR J & | o+ 1 o LINIT2 S For)
19 (BEGIN
I 20 « 3 89 CLOSE ##
. 21 « 3 IFEITH J LQ 3 s (o= s) IrFel
) 22 (& INOXS ® J 8
- 2y ¢ 3 ORIF | § (6) ORIF
1 26 (&) INDXS = & §
i 2% «) END
= 26 (3) e IFEITH g4
a 27 ¢ SWITCH PICK & (LABEL] o LABELL o« LABEL] o+ LABEL2) 8
28 (3 GOTO PICK (S INDXS = | $) § (7= 11! cecce)
. 29 ¢ 3 L48gL2. INV Covoee
g 6O10 €xuPL3 §
1 30 ¢ 3 LABEL]L . 12 1) IFEl¢===""
% IFEITH RESULT LS & §
3 e MESSAG = MSG2 $
32 ¢ 3 ORIF IESULT EC & C le= 1% ORIF
33 (&) MESSAG = mMSGY §
s 0 Y oRIF 1 3 « 1le) ORIF
) 35 () MESSAG ® WSGe §
i 36 ¢) END
373 e IFEITH g¢p
) Ly OUTPUT PRINTR MESSAS § 170 1
i 39 (W ™o « 17 18
0 2 es J s#
a2 END « 19 20!
2t ez | 22
3 (1) #8. OFFTRACE o+ RESULT 28
LU B END

This module report is a listing of the source statements enhanced by the
control nesting level, indentation of each control level, decision points
flagged with their DD-path numbers, control statement abbreviations, and arrows
showing potential control transfers within and out of the module.

Figure 4.6. Module Listing

-

4-8

"r
’
?

I ¥

MODULE INVOCATION BANDS

MODULE <NPUT > JAVSTEXT <NPUT >¢ PARENT MODULE <NPUT >

LEVEL -2 -l 0 1 2
NPUT
GTCR RTOH
CKBK ERRXR
LUK BTOD
oLooK ERROR
oLooK oPUT
LOOK SYSTEMP
GTCARD
PRXX
TERMIN
8700
ERRXR
FATAL
oPUT
wRAPUP

This report shows the selected module within the invocation hierarchy.
At the center is the specified module. Each successive band of modules from
the center to the left shows the calling modules; each successive band to the
right shows the called modules. The left (calling) modules reside on the
library; the right (called) modules can include modules external to the JAVS
library. Five bands on each side of the specified module are displayed when
the DOCUMENT macro command is used. The band width is a user option. Within
each band, the modules are listed alphabetically.

Figure 4.7. Module Invocation Bands

MODULE INVOCATION SPACE,...
! MODULE <NPUT >¢ JAVSTEXT <NPUT >¢ PARENT MODULE <NPUT >

3 PROC NPUT §

INVOCATIONS FROM WITHIN THIS MOQULE

MODULE RTOM

STMT = 68 BTOM (LYNCNT)

STMT = 69 ATOM (STCTR)
MODULE ERRXR

STMT = 29 ERRXR (&4)
MODULE GTCARD

STHMT = 41 GTCARD (= STATUS o CRO1)
MODULE PRXX

STMT = 79 PRXX (MEL + 120 o+ EJCT)
MODULE TERMIN

STMT = 49 TERMIN (1)

INVOCATIONS TO THIS MODULE FROM WITHIN LIBRARY

MODULE GTCR

STMT = 3 NPUT
MODULE OLOOK
STMT & 119 NPUT
} STMT = 306 NPUT
STMT = 363 NPUY

This module report shows all invocations, along with the statement
numbers, to and from the specified module. It is useful in examining actual
parameter usage.

Figure 4.8. Module Invocation Space

o——

4-10

MOOULE DO-PATH DEFINITION LISTING

MODULE <EXMPLL >¢ JAVSTEXT <EXPROGM >, PARENT MODULE <EXPROGM >

NO. LVL STATEMENT DD=-PATHS GENERATED
1 ¢0) PROC EXMPL] (LIMITI , LIMIT2) $
oo DD-PATH 1 IS PROCEDURE ENTARY
e o e
(1) IF LIMIT] GQ 100 $
®e DD=PATH 2 IS TRUE BRANCH
e DD=PATH 3 IS FALSE BRANCH
¢ @ 96 e
12 ¢ 1) FOR T = 1 4 1 o LIMITL §
13 ¢ 2) BEGIN
1802 FOR J w1 o 1 » LINIT2 §
19 ¢ 3 BEGIN
* o 0
21 () IFEITH J LO 3 8
®e DD-PATH 4 IS TRUF BRANCH
®e DD=PATH § IS FALSE BRANCH
* o o
23 (3 ORIF 1 8
®e DD=PATH 6 IS TRUE BRANCH
L I
2% (3 END
* o o o
27 (3 SYITCH PICK = (LABELL o LABELL o LABEL]1 ¢ LABEL2)
28 () GOTO PICK ($ INOXS = 1) §

1S SwITCH OUTwWAY
IS SWITCH OUTwAY
1S SwITCH OUTwAY
IS SwITCH OUTwAY
IS SWITCH OUTwWAY

®e DD-PATH
®e DNePATH
®e 00=PATH
®e DD=PATH
®e DD=PATH

-
- 0B
Ve wnN-

30 (N LABELL,
IFEITH RESULT LS ¢ 8
®e DN=PATH 12 IS TRUE BRANCHW
®e DD=PATH 13 IS FALSE RRANCH
L I
32 ¢ ORIF RESULT EQ ¢ ¢
®® DD=PATH 14 IS TRUE BRANCH
®e DD=PATH 1S IS FALSE ARANCH
* e e 0
36 () ORIF 1 S8
®6 DD=PATH 16 IS TRUE BRANCH
L I I
Jo (M) END
* o e 0
9y END

®® 0D=PATH |7 1S LOOP ON FOR AGAIN
®e DD=PATH 18 IS ESCAPE FOR LOOP

L
a2 END
®® DD-PATH 19 1S LOOP ON FOR AGAIN
®e DD=PATH 20 IS ESCAPE FOR LOOP é

This report is useful for documentation purposes because it defines the
outways of all decisions and makes the decision points more visible by
omitting the intervening sequential statements. The last switch outway is
the "drop through" path.

Figure 4.9, DD-Path Definitioms

4-11

PICTURE wITwW allL DND=PATWNS,..,

MODULE <EXAMPL >4 JAVSTEXT <CEXAMPL >¢ PARENT MODULE <EXAMPL >

STty SQTMT
(d = REGINy E s ENDy S 3 SELF=LOOP) TYPE NO ., DD=PATH NUMRERS, ..
<PRrROC 3> 8 1
-
<IFEI 15> EB® 2 3
e
<0RIF 17> RBe«ER 'Y S
*e &
ES <AQMT 23> EebBe '3 7
L L XY
B <EnD 24> Beto 9 8.
*e ¢
<ORIF 27> eeBF 10
deo ¢
§ <asMT 31> «Et8 11 12

L 4 -

*
<END 32> € €

o= woe P e e L T T P T R e e P P L L LT L P L L

This report pictorially illustrates the program flow between decisions
in the module. Each B -~ E sequence is a single decision outway; each out-
way is assigned the unigue DD-path number shown at the right of the report.
Any control flow which starts and ends on the same statement number (as in
the decisions to "loop again” on JOVIAL FOR statements) is marked with an §
for a self-loop.

Figure 4.10. Control Flow Picture

5 INSTRUMENTATION

JAVS instrumentation automatically inserts a set of probe statements
into each module to capture control and record information during execution.
The module can be compiled in instrumented form and used in Test Execution.
The probed modules are logically equivalent to the original source. Instru-
mentation can be performed before or after the documentation reports have
been obtained. Figure 5.1 shows the role of instrumentation in the context
of the testing process.

5.1 TASKS
There are two types of instrumentation:

11 Structural Instrumentation. Software probes are inserted into
the source text at each invocation point, each return point, and
each statement which begins a DD-path. Each probe includes a
call to special data collection routines which capture and record
information concerning flow of control in the executing
module(s).

Z. JAVS Directive Instrumentation. Software probes which monitor
the results of assignment and exchange statements during Test
Execution are inserted in the source text where the user has
placed JAVS computation directives (Sec. 1.5 of the Reference
Manual). Each directive controls execution-time output which is
interspersed with normal program output.

In addition to the structural probes, software probes are inserted to
indicate a new test case and to indicate the end of the test. The instru-
mented source is written onto the LPUNCH file, where it can be input to the
JOVIAL compiler. During execution of the instrumented program (Test
Execution), the data collection probes record on an audit file which is
analyzed by JAVS to provide execution tracing and coverage reports.

52 INSTRUMENTATION INPUT

JAVS instrumentation requires the data base containing syntax and
structural analyses for all modules being instrumented plus a set of commands
to direct the instrumentation.

5.3 COMMANDS
The macro command
(1) PROBE,JAVSTEXT = <text name>.
causes all modules in the named JAVSTEXT (START-TERM sequence) to be
instrumented and written to file LPUNCH for compilation. The above

macro command expands into the following standard commands:

(2) OLD LIBRARY = TEST.
START.

5-1

col T e

1SLLY-NY
v
~]
~ 0 .m o ot e ~
- - ~ cu a1 Q
L] o Q- £ e “
n“ U .m v Ay D> O oo ~ 7]
5 [0 u Moo v.nm.d 1 w Q
80 v v ~ o RO - N ® o
v w "4 ~ ~ o U & M e v . v o
v (an ~ ~ QU R+ LH UV © @ 2 be =)
" o [O N E & N 2 v o i o ¢ ol
Q- © ncog ~ O 0~ 02 0 o (O ny
o o [© Ao o o 8@ %] ~4
Vo oN @ Mot 8 med Q ~ o o0
SIS Y] = qu o w a0 . TN w N om
s Q@ aJ O w g n o oL e < @ o @ o =]
8 g v ° ot O v o o< O 7] e « Ry o~
S N o 4.J 3 o O 00N § o
Qo O . L PR o 0 e 2 mmt ER CTER o w
G U S ON 8 e v U . -~ O &G 2 =4 I
we . Y 4. C @ O nwEOUTN Q Q. o~ Q v
- a e 3 Wga e " U0 L M (AR R =
OO0 - kY] < oo o e) 2
S 0 on 0 UM a " g oY o.c. I -3 o
e B O = S 2 n o VA0 0B N o -
6 be oo EH e S 1 M Owna oo > =
bl O -] v 0w 3 e SRR . &
“e O = Vo oyt 0N 0w o X o -t -
"] N “Q 23 & (=1 v 0 U 3 <1 o
o4 b Q= U be - o - e N 2] L
9 ¢ v [¢ - A . o 00 o o
e Y] moaovy v.onnms
v O 3G [3 ooy ~ U+ O 2 e
o w © £ C D & 0w o) o
LS I TN 1) m & t e) ~ W o 33U @ o
W a3 o< & © UUo k.o I
v 3o » OB N Py
U o« i VU O Q% 3 82036 o
¥ 5 € .C o=t euq 3 00w > o
2 H QO >~ a0 (] w—~HH.o a
o - 0. -4 oA N LD “w J o) o~
©w m-g M S0 & oo ~ H O
wes SRR S I I) uhmtge g)
X e o a CHL QO @ o a Qo u = n
A > e ke S Y a0 Mo oM M ~
I s oY VN one ©v o H A o
el U I <) Wi 0y > oo m
S, 6 M A e LWy < B MW @
Qe M UETTEH O a0 o 1=}
Ll
Uy
(o}
R SRS Q
= —
g 3
e | - ”
==
MA. fal saq <C a
il -8 0 [mm
< — oD e =
W W b=) w -
Q) € 5= 0 >- = 3
[& il S e w o o
2D = D & e e .
) C S e S 2D = -l
> (A &L V) & ww >
== £ N
=
/{-u-- Q
v
&
>~ |
34 _& el
(=1 o B
42 o
=0 a
I
7R
ol e
. gm0
DR o et
o N £
PO
1 MmN
- F WA
i Al i ek R G e

'!l.llll-lIllll|l|llIllllIIlIIIIIlllIIllllllllIlllllllI-llllllll!lllllll!!!ﬂﬁw~

JAVSTEXT = <text name>.
FOR JAVSTEXT.
INSTRUMENT.
END FOR.
PUNCH,JAVSTEXT = <text name>,INSTRUMENTED = ALL.
END.
Since the JOCIT JOVIAL compiler at RADC accepts only one START-TERM
sequence in a single compilation activity, it is recommended that the user

instrument only one JAVSTEXT per JAVS run; i.e., use only one PROBE macro
command.

Prior to execution of the instrumented modules, the user must specify
the test initialization and termination by invoking one of the JAVS data
collection routines. The insertion of these invocation statements can be
performed manually or automatically by using the following commands during
instrumentation:

(39 OLD LIBRARY = <libname>.

START.

PROBI,STARTTEST = <module name>,<text name>,
<statement no.>,<test name>,<tracing level>.

PROBI,STOPTEST = <module name>,<text name>,
<statement no.>.

"PROBE,JAVSTEXT = <text name>.
PRINT,JAVSTEXT = <text name>, INSTRUMENTED = ALL.
All of the command rules associated with this set of instrumentation commands

are described in Appendix B. A description of the PROBI command and its
options is in Sec. B.2.4.

N
555 INSTRUMENTATION OUTPUT

LB
R

.\ The primary output is the instrumented source code which is normally
wﬁitfgn to the LPUNCH file [note the PUNCH command in the expansion of the
PROBE 'macro in Sec. 5.3 (2)] during the instrumentation process. At user
%equ@st;‘the instrumented source code can be saved on the library to be
written:to LPUNCH at a later time.

Printed output from instrumentation consists of a short description of
each probed module to inform the user of the extent of instrumentation per-
formed (see Sec. 4.4.3 of the Reference Manual for instrumentation options).
The usef can request that the probed text be printed at the end of the instru-
mentation activity, or at any later time if the probed code was saved on the
library, by using the PRINT command in Sec. 5.3 (3).

6 TEST EXECUTION

Once the JOVIAL source code has been instrumented by JAVS, either before
or after obtaining the documentation reports, the instrumented code can be
executed with test data. Figure 6.1 shows the Test Execution process in the
context of the entire testing process.

The instrumented source code output on file LPUNCH is compiled with a
COMPOOL which supplies definitions for the JAVS data collection procedures.
The compiled code is then loaded with the JAVS data collection procedures
from the JAVS object code library and any other externals which are necessary.
During Test Execution the program operates normally, reading its own data and
writing its own outputs. The instrumented modules call the data collection
routines which record on the test file, AUDIT, an execution trace and accumu-
lated data on module invocations and DD-path traversals. Performance data
resulting from JAVS computation directives are interspersed with normal pro-
gram output to the printer. (See Sec. 1.5 in the Reference Manual.) The
data base library is not used during Test Execution.

Each Test Execution may consist of a number of test cases. The program
identifies the start of each new test case by executing a call to one of the
data collection routines (PROBI); the end of all test cases is similarly
treated. These identification calls are automatically inserted by using the
PROBI,STARTTEST and PROBI,STOPTEST commands during instrumentation or are
manually inserted by the user in the program prior to compilation; all other
instrumentation of the source is performed automatically.

6.1 TASKS
Test Execution differs from normal execution of the program in four

respects:

. Some or all of the program has been instrumented.

1

2. Test case boundaries are identified.

3 The instrumented code is compiled with a JAVS COMPOOL.
4

¥ Data collection routines are added to the load sequence.
Figure 6.2 shows a diagram of the Test Execution process.

6.2 REFERENCES TO DATA COLLECTION ROUTINES AND TEST FILE

The instrumented source contains invocations of the data collection
procedures which were not in the original user source. If the user's program
has a COMPOOL, the procedure declarations for the JAVS data collection routine
(PROBM, PROBE, PROBI, and PROBD) must be added to the COMPOOL. If the program
has no COMPOOL, the one shown in Fig. 6.3 should be used. This is necessary
in order to compile the instrumented source without compilation errors.

*

If the JOVIAL compiler accepts a list of processed COMPOOLs while compiling
executable modules, then the one shown in Fig. 6.3 must be included. The
JOCIT compiler requires the FILE declaration to be in the COMPOOL.

6-1

T

rolned,

I3

dac

ed

chang

RS Lo,

L pYGEiaY Golument

l.e—— Program execution provides normal computational

results as well as outputs from the instrumen-

Structural flow output is recorded for

later post-test analysis by JAVS.

tation.

-directed

User

TEST EXECUTION,

PROGRAM

program performance output is interspersed with

normal program output.

PERFORMANCE

CluSU LG

tnddvidgusily zd

Figure 6.1.

6-2

The Role of Test Execution in the Testing Process

SOURCE

1 |

JOVIAL

!
JAVS-6 DATA
INSTRUMENTED NON-INSTRUMENTED
! [/' USER SOURCE*t [/USER SOURCE + [, COLLECTION

COMPILER

OBJECT
TEXT

from
INSTRUMENT

USER
REPORTS,
FILES

TEST

USER TEST
‘ EXECUTION

DATA

to ANALYZER

DIRECTIVE
REPORTS

*FROM INSTRUMENT
"MAY ALSO CONTAIN CALLS TO PROBI AND PROBD

Figure 6.2. Test Execution Processing

AN-43845

#2.JAVSTERT PRCHMPL PRESET = COMPOOL FOR PROBE ANALYSIS DURING EXECUTION

(1]

START s
DEFINE INTG #¢ | 26 S #8 §
DEFINE HLL #2 M & 22 §
DEFINE DINTG #2 | 4«8 § ## §
DEFINE OMLL #2 1 8 28 §

PROC PROBM (MODNAM, JAVTXT ¢NODPS) $

BEGIN

ITEM MODNAM OWLL §

ITEM JaVTXY OHLL $

1TEM NNOPS INTG §

ENOD

PROC PROBE (MODNAM+ JAVTXT+DOP)S

BEGIN

ITEM MNDNAM DHLL $

ITEM JAVTXT DHLL §

ITEM DNP INTG §

END

PROC PROBI(TESNAMTFLAG)S

BEGIN

ITEM TESNAM OHLL §

ITEM TFLAG INTG §

END

PROC PROBDI(LINEFLAG)S

BEGIN

ITEM LINE H 80 §

1TEM FLAG INTG §

END

COMMON PROBEF $ ##2COMMON BLOCK FOR PROBE FILEx2
BEGIN
Fﬁif AUDIT B 84 R 0 V(OK) VIX1) V(X2) V(X3) V(EOF) 08%
EnO

TERM §

Figure 6.3. COMPOOL for References to JAVS Data Collection Routines

A FILE declaration for the test file AUDIT (08) must also appear. The
location of the FILE declaration (i.e., in a COMPOOL or in the main program)
and its format are dependent on the JOVIAL compiler being used. The example
in Fig. 6.3 is for RADC.

Job streams for compiling the instrumented source code, loading, and
executing are given in Appendix D. Test Execution operates without the JAVS
environment, except for the data collection routines. Thus, there are no
JAVS commands, data base library or JAVS reports associated with this process.

6.3 TEST CASE IDENTIFICATION AND TEST FILE CONTROL

At appropriate places in the instrumented source program (i.e., where a
new test case begins and at the end of all test cases) a call to PROBI must be
inserted. PROBI performs two services: it identifies each test case and
controls the recording of data on the test file. PROBI has two parameters:
the first is used as a test case name on ANALYZER reports and is a Hollerith
name of eight characters; the second is used to control the amount of data
actually recorded on the test file.

6-b

The possible values for the test file control parameter TFLAG are shown
| in Table 6.1. A Zero value signals the end of all test cases. A non-zero

| value signals the start of a new test case (and the end of the previous test
; case, if any). The value of the second parameter (if nonzero) determines the
E ! amount of execution tracing. If TFLAG is 1, no tracing is maintained; if

; TFLAG is 2, invocations and returns are traced; if TFLAG is 3, invocations,
- returns, and DD-paths are traced.

TABLE 6.1
E TEST FILE DATA CONTROL WITH PROBI

TFLAG SIGNAL TEST-FILE DATA RECORDED ANALYZER REPORT OPTIONS
g 0 end-of-test (last) test case summary
s file
E |
i new test test-case summary SUMMARY, HIT, NOTHIT,
. case MODLST, DDPATHS
2 new test test-case summary, module SUMMARY, HIT, NOTHIT,
case invocation/return trace MODLST, TIME, MODTRACE,
DDPATHS
3 new test test-case summary, module SUMMARY, HIT, NOTHIT,
case invocation/return trace, MODLST, TIME, MODTRACE,

DD-path execution trace DDPTRACE, DDPATHS

7 POST-TEST ANALYSIS
The Test Effectiveness Measurement Analyzer provides a detailed and
| comprehensive analysis of testing coverage. ANALYZER (JAVS standard command

keyword for this functional process) generates reports on execution tracing,
coverage, timing and paths not taken. The ANALYZER Process is the end of one
revolution in the automated testing cycle. Armed with the JAVS reports show-
ing the program's execution behavior, the tester can determine whether further
testing is necessary. Figure 7.1 shows where the post-test analysis fits

into the testing process.

7.1 TASKS

; ! ANALYZER reads the AUDIT file which was generated and saved during Test
| Execution. Structural data are input from the data base library, and various
§ reports are produced at user request which show the extent of program cover-
E age provided by the test cases.

7.2 ANALYZER INPUT

The data base library, containing syntax and structural analyses, along
with the execution trace (AUDIT) file and JAVS commands are input for post-
test analysis.

7.3 COMMANDS
The JAVS command set
OLD LIBRARY = <libname>.
START.
ANALYZER,MODLST.
TEST.

provides a collection of reports useful as the preliminary test effectiveness
measurement. These reports contain statement coverage, execution tracing of
modules, DD-paths not taken, and a summary of invocation and DD-path infor-
mation by test case. The above ccmmand set expands into the following JAVS
standard commands:

OLD LIBRARY = <libname>.

START. :
ANALYZER ,MODLST. (Fig. 7.2)

ANALYZER,ALL MODULES. 2
ANALYZER , SUMMARY . (Fig. 7.3) f
ANALYZER, NOTHIT. (Fig. 7.4) |
ANALYZER,MODTRACE. (Fig. 7.5) |
ANALYZER. |

END.

o JOVIAL source ccde is input ¢

PROBE

MOTLILE

CUMENT

{opcicnal)

ol S
analysis. A special form of coumen
3 ocessing for

icserted bv the uzer directs
program performance analysis.

=
A
b
L2 Al
AN-47751

JAVS analvzes the code and generstes 8 directed
craph of the ccotrol structure.

Tne posaidble flows cugh the program ace
deterxined. All pertinent data is stcred ia &
data hase for lacer use. Additional or

changed scurce ccode cauzes an existicg daca

inserts sofcware probes

e co incercept and cecord

. A second tvpe
reccrd statiatics
o directives

urL
tico L3 us

constirucced

programn

Tnace
o oucput,

TESTING | JAVS includes detailed post-test analysis
TEST EFFECTIVENESS facilities which provide measures of testing

MEASUREMENT thoroughness, both individually and cumula-

| tively for a set of test cases.
s
WO 7rest aoas S
———-(\ ACHITVED />~— The results are examined by the user to determine
. St s if texc goals have baen met and testing ie
\\\;’,/’// coopleted,
§ res
Figure 7.1. The Role of Post-Test Analysis in the Testing Process

If the testing goal is execution of all (or most) decision outways (DD-paths),
then the command

ANALYZER,DDPATHS. (Fig. 7.6)
should be specified in addition to or in lieu of ANALYZER,MODLST.

7.4 ANALYZER OUTPUT

The reports produced during post-test analysis for the sample command
set in Sec. 7.4 are shown in Fig. 7.2 through 7.6. Additional reports con-
taining module execution timing, DD-path tracing, and DD-paths executed for
each test case are described in the Reference Manual.

In the report descriptions, the '"specified module" is determined by the
user. The TEST macro command used in the sample command set contains the
module specification: ANALYZER,ALL MODULES which refers to all modules on
the data base library. The user can specify a subset of modules by using
the macro command

TEST ,MODULE = <name-1>,...,<name-n>.

or the standard command

ANALYZER,MODULE = <name-1>,...,<name-n>.

MOOULE STaTEWENT LISTING
BOOULE <EXPPOGM >¢ JAVSTEAT <ETPROGH >¢ PARENT MODULE <CXPROGH >

I
N0, VL STATEVENT OD=PATHS CONTROL
b JO ¥ 8, JAVSTERY EXMROGM COMPUTE (EXCOWPL) o8
2.(m Sraar
3 ¢to0) s
e . (0 #0 JOVIAL SIMPLE TEST PROGRAN s#
. LI 1 ITE™ ID » 4 8
6 (M) ITEv 17691 1 26 § 8%
7T (0 ITEVY ITER2 |1 24 S 8
8 (0 1TEv ITEE A w4 8
L 0) ITEY TTEW2A W 4 8
10 ¢t 0 OVEALLY TTEAL w |TERIA S
1t OVERLEY JTFER2 » JTER2A 3
12 ¢ n) 1TEw CA3D w 80 8
13 « 0 FILE PEACEP W 0 R 06 V(OK) V(EOF) TAPES 8
16 (o) FILE PRINTAR M O R 128 VIOK) V(EOF) TAPES S
15 (o) MONTTOR 1D o ITERLA ¢« [TER2A 8 o
16 ¢ o) MESSAG ® wSGl § t 1 1
17 ¢ o) 0.TPUT PRINTR MFSSAS § 1 170
18 ¢ o) LI N 3 170 ¢omee~
IVPHT READER CAKD 8
19 ¢ o) IF OEADER NO V(EOT) § t 2= 3 3 44
29 (1) 8EGIN 2
21 t 1) BYTE (3.0 « 4 8) (1D) = BYTE (S ¢ o 6 Q) (CaRmD) 8 2
22 1) AYTE (30 o 4 8) (ITEMIA) ® BYTE (3 9 o ¢ 8) (CaRD) 8 2
2y ¢ 1) BYTE (S 0 o 64 8) (ITER2A) ® BYTE (S 19 o 4 8) (CARD) 8 2
26 ¢ 1) ExMPL] (ITER] o ITERZ) & 2 INV
2% (1) g8 EXMPL2 g8
26 1 1) IF 1TER] 60 100 8 (4= §) 2 1F
27 ¢ 2 GOTY ERwPL? § [Inv
29 (1) GOTO 86 § 2 P)
29 ¢ 1) END 0
3ot o et IF ss
Nt STOP & 1
32 (0 es EXAMPL] w2
NBcow TERw §
CRECUTAMLE STATEMENTS le
STATEWENTS EXECUTED 12
PER CENT LxECUTED s,

This report, output for each specified module <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>